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Abstract

Given a hypersurface M of a Riemannian manifold Q, one says that M is curvature-adapted
(to Q) if, for each p ∈M , the normal Jacobi operator and the shape operator of M commute.
The first operator measures the curvature of the ambient manifold along the normal vector of
M , whereas the second describes the curvature of M as a submanifold of Q. This condition
can be generalized to submanifolds of arbitrary codimension.

In this talk, we will study curvature-adapted submanifolds in a Lie group G equipped
with a bi-invariant Riemannian metric. In particular, we shall see that, if the normal bundle
of M ⊂ G is abelian [3] (for every p ∈ M , exp(NpM) is contained in some totally geodesic,
flat submanifold of G), then any normal Jacobi operator of M equals the square of the cor-
responding invariant shape operator [2]. This permits to understand curvature-adaptedness
to G in terms of left translations [1, Theorem 1].

For example, it turns out that, in the case where M is a hypersurface, the normal Ja-
cobi operator commutes with the ordinary shape operator precisely when the left-invariant
extension of each of its eigenspaces remains tangent to M along all the others. As a fur-
ther consequence of the same result, one observes that any surface in a three-dimensional
bi-invariant Lie group is curvature-adapted.
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