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Lecture 1: Deep learning as optimal control and structure preserving deep
learning.

Deep learning neural networks have recently been interpreted as discreti-
sations of an optimal control problem subject to an ordinary differential
equation constraint. A large amount of progress made in deep learning has
been based on heuristic explorations, but there is a growing effort to mathe-
matically understand the structure in existing deep learning methods and to
design new approaches preserving (geometric) structure in neural networks.
The (discrete) optimal control point of view to neural networks offers an in-
terpretation of deep learning from a numerical analysis perspective and opens
the way to mathematical insight.

We review the first order conditions for optimality, and the conditions
ensuring optimality after discretisation. We explain the connection to par-
titioned Runge-Kutta methods for Hamiltonian systems. The differential
equation setting lends itself to learning additional parameters such as the
time discretisation. We compare these deep learning algorithms numerically
in terms of induced flow and generalisation ability.

We furter discuss a number of interesting directions of current and future
research in structure preserving deep learning. Some deep neural networks
can be designed to have desirable properties such as invertibility and group
equivariance or can be adapted to problems of manifold value data. If time
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permits, we discuss neural networks that are designed so to guarantee sta-
bility and contractivity and that can be used to solve inverse problems in
imaging. This lecture is built on material taken from [3, 4, 5].

Lecture 2: An introduction to shape analysis and deep learning for optimal
reparametrizations of shapes.

Shape analysis is a mathematical approach to problems of pattern and ob-
ject recognition and has developed considerably in the last decade. The use
of shapes is natural in applications where it is interesting to compare curves
or surfaces independently of their parametrisation. Considering a smooth
setting where the parametrized curves or surfaces belong to an infinite di-
mensional Riemannian manifold, one defines the corresponding shapes to be
equivalence classes of curves differing only by their parametrization. Under
appropriate assumptions, the Riemannian metric can be used to obtain a
meaningful measure of distance on the space of shapes.

One computationally efficient approach to shape analysis is based on the
Square Root Velocity Transform, and we have proposed a generalisation of
this approach to shapes on Lie groups and homogeneous manifolds.

A computationally demanding task for approximating shape distances
is finding the optimal reparametrization. The problem can be phrased as
an optimisation problem on the infinite dimensional group of orientation
preserving diffeomorphisms Diff+(Ω), where Ω is the domain where the curves
or surfaces are defined. In the case of curves, one robust approach to compute
optimal reparametrizations is based on dynamic programming, [11], but this
method seems difficult to generalize to surfaces.

We consider here a method inspired by a “Riemannian” gradient descent
approach obtained by representing the gradient gradE in terms of an oth-
onormal basis of TidDiff+(Ω) and projecting gradE on a finite dimensional
subspace. The approximations are obtained composing in succession a num-
ber of elementary diffeomorphism equal to the number of iterations, and
optimizing on few parameters at the time. This method can be improved by
optimising simultaneously over a larger number of parameters in an approach
reminisent of deep learning. This algorithm is motivated by results in [1],
about the controllability of the group of diffeomorphisms, via the composition
of a finite number of elementary diffeomorphisms.

This lecture is built on material taken from [6, 7, 8, 12].
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