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I The work presented in this talk is the result of a wonderful
collaboration with Tomoki Ozawa, from the Advanced
Institute for Materials Research (AIMR) in Tohoku University,
Japan.
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Geometry of band insulators and
Chern insulators
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Insulators versus metals (band theory)

Figure: A band insulator (left) and metal (right). The ground state is
obtained by filling all the states below EF . In the insulator there is an
energy gap to excite the system, while on the metal there isn’t.
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Setup for tight binding models

I We will consider systems of fermions on a 2-dimensional
lattice with periodic boundary conditions. The period on each
direction is N.

I We will eventually take the N →∞ thermodynamic limit.
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Figure: Position space.
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Figure: Topologically, the positions of the fermions take values in a
two-torus.
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I In the thermodynamic limit the real space becomes the lattice
Z2 and the allowed momenta live in the Brillouin zone, which
itself is topologically a torus BZ2 = R2/2πZ2:

e ik·r = e i(k+K)·r, for r ∈ Z2 and K ∈ 2πZ2.

I With the standard trivial boundary conditions, the allowed
momenta for the fermions are

k =
2π

N
m, with m ∈ {0, ...,N − 1}2,

which should be understood as taking values in BZ2. In some
appropriate sense, we recover BZ2 as N →∞.
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Band insulators and tight binding free fermion models

I In the translation invariant, charge preserving setting,

H =
∑
k

ψ†kH(k)ψk,

where ψ†k = [ψ†k,1...ψ
†
k,n] is an array of fermion creation

operators, accounting for internal degrees of freedom and
H(k) is an n × n Hermitian matrix yielding the action of H in
the single particle sector.

I If the hoppings in real space decay fast enough, the map
H : BZ2 → Herm(n); k 7→ H(k) is smooth.
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I Assume that we are in a band insulating state, so that there
are bands below the Fermi level and bands above.

I The Fermi projector

P(k) = Θ(EF − H(k))

is smooth and defines a vector bundle, the Bloch bundle
E → BZ2, over the Brillouin zone.

I Over each k ∈ BZ2, we take the vector space of eigenvectors
with energy below EF , i.e., Ek = ImP(k).

I Smoothness of P guarantees smoothness of E .
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Figure: The Bloch bundle E → B.Z . defined by the valence band
projector k 7→ P(k). Notice that the Ek is naturally a subspace of a fixed
vector space Cn since H(k) is an n × n matrix.
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Berryology

I Since each space Ek ⊂ Cn, we can define a parallel
transportation rule.

I Namely, we have a connection/ covariant derivative on
E → BZ2, ∇Ψ(k) = P(k)dΨ(k), for single particle wave
functions Ψ on E (sections of E ).
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Berryology (cont.)

I Given a local o.n. basis for E provided by wave functions
{Ψi}ri=1, the associated U(r) gauge field, known as the Berry
gauge field, is given by

A = [Aij ] = [〈Ψi |d |Ψj〉] = Aµdk
µ.

I The Berry curvature is given by

F = dA + A ∧ A = [Fij ] =
1

2
Fµνdk

µ ∧ dkν ,

with Fµν =
∂Aν
∂kµ

− ∂Aµ
∂kν

+ [Aµ,Aν ].
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Ground state

I Now if we are considering the finite system with periodic
boundary conditions, we are sampling H(k) at points
k = (2π/N)m, with m ∈ {0, ...,N − 1}2.

I The ground state is obtained by filling the bands below EF .

I This state is constructed as follows.
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Ground state (cont.)

I Forgetting about the periodicity of H(k) in k, we obtain a
family of matrices in R2. Since R2 is contractible, we can find
global assignments

R2 3 k 7→ si (k) = (a1
i (k), ..., ani (k)) ∈ Cn, i = 1, ..., r ,

such that for each k, they form an o.n. of Ek. The si ’s induce,
generally, multivalued wave functions over the Brillouin zone.

I The si ’s give rise to creation operators (Bogoliubov-Valatin
transformation)

ξ†i ,k =
n∑

j=1

aji (k)ψ†j ,k, i = 1, ..., r .
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Ground state (cont.)

I The many-body ground state at finite size and periodic
boundary conditions is

|GS〉 =
∏

m∈{0,...,N−1}2

r∏
i=1

ξ†
i ,k= 2πm

N

|0〉.

I Crucially, the piece

r∏
i=1

ξ†
i ,k= 2πm

N

|0〉

can be identified with a generating element of the top exterior
power of the fiber Ek, namely

s1(k) ∧ · · · ∧ sr (k) ∈ ΛrEk.
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I The ground state and its physical observable properties are
completely captured by the map

f : BZ2 → P (ΛrCn) ; k 7→ [s1(k) ∧ · · · ∧ sr (k)].

BZ2

P $$

f //// P (ΛrCn)

Grr (Cn)

ι

OO

I f is the composition of two maps f = ι ◦ P.

I P : BZ2 → Grr (Cn); k 7→ P(k), where we identify the set of
orthogonal projectors of rank r in Cn with the Grassmannian
of r -planes in Cn.

I The second map ι is the Plücker embedding which sends an
r -dimensional vector subspace E ⊂ Cn to the line through the
wedge product of a basis E .
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Response to an external gauge field – Chern insulators

I Typically, one is interested in the response of an insulator to
an external electromagnetic field.

I Linear response to a uniform electric field assumes the form

J i = σijE
j ,

where σ = [σij ] is the DC conductivity tensor.
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I The DC conductivity tensor may have a purely anti-symmetric
contribution which gives rise to the quantum Hall effect:

J i = εijσHallE
j .

Figure: The anomalous Hall effect.
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I A beautiful result by Thouless-Kohmoto-Nightingale-den Nijs
is that the Hall conductivity of the insulator is a topological
invariant:

σHall =
e2

h
c1(E ) · [BZ2]︸ ︷︷ ︸

characteristic number of E

=
e2

h

∫
BZ2

Tr

(
iF

2π

)

I Unlike in the Quantum Hall effect, we do not need an external
magnetic field to have non-vanishing σHall – anomalous Hall
effect / Chern insulator.

I This phenomenon is stable up to adiabatic deformations
preserving the gap. Mathematically: it depends only on the
homotopy class of P : BZ2 → Grr (Cn).
[actually, of f : BZ2 → P (ΛrCn)]
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I Chern insulators are then 2d band insulators described by
maps P : BZ2 → Grr (Cn) with non-trivial topological charge
yielding σHall 6= 0.

I Chern insulating phases are topological phases of free
fermions.

I Arguably more interesting topological phases are those of
strongly interacting fermions.

I A paradigmatic example is the FQHE – ground state
degeneracy tied to the topology of the base manifold; anyonic
gapped excitations above the ground state with fractional
charges.

I To realize such phases in band insulators it is useful to
understand what are the ingredients that allow for the FQHE
in the first place.
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Quantum Hall Effect
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LLL physics

I When one considers the single particle theory of electrons in
the plane in the presence of an external uniform magnetic field
one gets the so-called Landau levels — they correspond to
energy levels which are infinitely degenerate.

I The lowest Landau level (LLL) can be interpreted as the space
of square integrable holomorphic sections of the
electromagnetic line bundle where the electromagnetic gauge
field acts as a connection.

ψm(z) ∼ e−
B|z|2

4 zm, m ∈ N.
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LLL and geometric quantization

I In geometric quantization terms, the LLL is the quantization
of (R2,Bdx ∧ dy) equipped with the Kähler structure coming
from the magnetic field 2−form iF = Bdx ∧ dy and the
standard complex structure determined by z = x + iy .

I Effective reduction of the classical phase space T ∗R2 ∼= R4 to
the “magnetic” plane R2.
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I Filling the LLL, i.e., filling fraction ν = 1, one obtains a
many-body state which accurately describes the integer Hall
effect

Ψ(z1, ..., zN) =
∏
i<j

(zi − zj)e
−

∑
i
|zi |

2

4

︸ ︷︷ ︸
Slater determinant
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Figure: The integer quantum Hall effect in the plane. Linear response
described by action S(A) = (1/4π)ν

∫
AdA. [A the external gauge field.]
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I For large B, for ν = 1/m, the Coulomb interaction is expected
to mix the states within the Landau levels, but not expected
to mix Landau levels =⇒ can project to the LLL
PLLL : H → LLL.

I Effective Hamiltonian described in terms of the projected
density operators

PLLLρqPLLL = ρq, with ρq =
∑
k

ψ†k+qψk.

[In first quantized language ρq = e iq·r.]

I

H =
1

2

∑
q

V (q)ρ−qρq,

where the V (q)’s are the Fourier components of the Coulomb
potential. No kinetic part because we are projecting to the
LLL.
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I The projected density operators satisfy the GMP/
W∞−algebra

[ρq1
, ρq2

] = 2ie
B
2
q1·q2 sin

(
B

2
q1 × q2

)
ρq1+q2

which is a quantum version of the algebra of area-preserving
diffeomorphisms of the plane equipped with (magnetic)
symplectic form Bdx ∧dy : {e iq1·r, e iq2·r} = Bq1×q2e

i(q1+q2)·r

I This is consistent with the fact that the LLL is the
quantization of the symplectic plane.
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I Unfortunately, there is no known exact GS solution to the
strong interacting problem described above.

I Magically, for ν = 1/m, we have the Laughlin trial ground
state wave function

Ψν(z1, ..., zN) =
∏
i<j

(zi − zj)
me−

∑
i
|zi |

2

4 ,

which very well describes experiments. Such ground state
wave function is argued to be in the same phase as the ground
state wave function of the FQHE Hamiltonian (adiabatically
connected).

I Furthermore, the quasihole excitations described by

Ψξ(z1, ..., zN) =
N∏
i=1

(ξ − zi )Ψν(z1, ..., zN)

have charges which are 1/m of the electron charge. They also
have fractional exchange statistics – anyons.
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Figure: The fractional quantum Hall effect in the plane. Linear response
described by action S(A, a) = −(1/4π)ν−1

∫
ada + (1/2π)

∫
Ada. [a is

the internal statistical gauge field and A the external gauge field.]
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I To summarize, the FQHE appears in the context of a
fractionally filled single particle flat band and the effective
projected Hamiltonian

H =
1

2

∑
q

V (q)ρ−qρq,

where the ρq satisfy the algebra

[ρq1
, ρq2

] = 2ieq1·q2 sin

(
B

2
q1 × q2

)
ρq1+q2

.
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Geometry of families of quantum
states
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Families of quantum states

I A state in quantum mechanics is one-dimensional subspace of
a Hilbert space H.

I Hence, the set of quantum states is P(H).

I Assume, for now, H = CN and hence P(H) = CPN−1.

I A family of quantum states parameterized by some manifold
M is a map f : M → CPN−1.
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Figure: A family of quantum states.

35 / 68



Families of quantum states (cont.)

I Associated with f we have a line bundle over M whose fiber
at p ∈ M is f (p) ⊂ CN .

I Over CPN−1 we have a “tautological” family of quantum
states f = idCPN−1 .

I The associated line bundle is the tautological line bundle
L→ CPN−1, whose fiber over ` ⊂ CN is ` itself.

I We then see that the line bundle associated to
f : M → CPN−1 is the pullback f ∗L.
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Families of quantum states (cont.)

I L is a subbundle of the trivial bundle CPN−1 × CN .

I Can define a connection ∇ by orthogonal projection. This
connection, and its pullback f ∗∇ acting on f ∗L, are known in
physics as Berry connections.

I If s : U ⊂ CPN−1 → L is a local section of L, we can see it as
an assignment ` 7→ |ψ(`)〉 ∈ ` ⊂ CN , and then, locally,

curv(∇) = F =
〈dψ|

(
1− |ψ〉〈ψ|〈ψ|ψ〉

)
|dψ〉

〈ψ|ψ〉
.
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Kähler structure

I The projective space CPN−1 is naturally a Kähler manifold
w.r.t. the Fubini-Study triple of structures (ωFS , JFS , gFS)
where ωFS is a symplectic form, JFS is an integrable complex
structure and gFS is a Riemannian metric.

I The three structures form a compatible triple:

ωFS(·, JFS ·) = gFS .

I The structure of Kähler manifold is closely related to
L→ CPN−1:

ωFS = − i

2
F .

Normalization:
∫
CP1 ωFS = −πc1(L) · [CP1] = π.
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I In quantum mechanics, typically, the family f : M → CPN−1

arises from the eigenvalue problem of a smooth family of
Hamiltonians H : M → Herm(N),

f (p) = ker (H(p)− εn(p)IN) = spanC {|n(p)〉} ,

then

curv(f ∗∇) = f ∗F =
∑
m 6=n

〈n|dH|m〉 ∧ 〈m|dH|n〉
(εm − εn)2

,

which connects to familiar perturbation theory formulae.
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Geometry of orthogonal projectors

I It is enlightening to cast the previous statements in terms of
orthogonal projectors in CN .

I A quantum state |ψ〉 ∼ λ|ψ〉, λ ∈ C∗, is uniquely specified by
an orthogonal projector

P =
|ψ〉〈ψ|
〈ψ|ψ〉

.

I We can then identify CPN−1 with the set of orthogonal
projectors of rank 1.

I A family of quantum states is then a family of orthogonal
projectors of rank 1: {P(p)}p∈M .
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Geometry of orthogonal projectors (cont.)

I Since orthogonal projectors satisfy P2 = P, we have, by
differentiation,

PdPP = QdPQ = 0,

where Q = I − P is the orthogonal complement projector.

I Furthermore, since P† = P, we have that dP is completely
determined by QdPP, i.e., a lower triangular matrix in the
basis where P = diag(1, 0, 0, ..., 0).
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Geometry of orthogonal projectors (cont.)
I The line bundle L has fiber ` = ImP. A section of L satisfies

Ps(`) = s(`) (where inclusion in the trivial bundle is implicit).
The Berry connection is explicitly

∇s = Pds.

I Then, the curvature is the endomorphism of L determined by

∇∧∇(s) = Pd(Pds) = PdP ∧ ds = PdP ∧ d(Ps)

= (PdP ∧ dPP) s.

To get the concrete 2-form, we may trace, to obtain

curv(∇) = Tr (PdP ∧ dPP)

= Tr (PdPQ ∧ QdPP)

= Tr
[
(QdPP)† ∧ QdPP

]
.
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The Fubini-Study Kähler structure in terms of orthogonal
projectors

I We learn that

ωFS = − i

2
Tr
[
(QdPP)† ∧ QdPP

]
= − i

2
Tr (PdP ∧ dP) .

I It can be shown that

(QdPP) ◦ JFS = iQdPP.

[Think of the LHS as a matrix valued one-form in CPn−1]

I Finally,

gFS = ωFS(·, JFS ·) = Tr (PdPdP) .
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Quantum geometric tensor

I Can organize the data in terms of an Hermitian metric on
CPN−1

χ = gFS + iωFS = Tr (PdP ⊗ dP) .

I The quantities f ∗χ, f ∗F = 2if ∗ωFS and f ∗gFS are known in
the physics community as the quantum geometric tensor, the
Berry curvature and the quantum metric, respectively.

I Note that although gFS is a Riemannian metric, f ∗gFS is not
necessarily so, as df may not be full rank everywhere.

I These geometric quantities can actually be measured in the
Lab! [See N. Goldman, T. Ozawa, et al. [1], [2]]
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Measuring the quantum geometric tensor

I To do so let H : M → Herm(N) be a family of Hamiltonians,
where M is the parameter manifold for which a certain energy
level εn(p) describes our family of quantum states |n(p)〉,
p ∈ M.

I Fix a point p ∈ M (may be couplings, external fields,...)
described by local coords xµ, µ = 1, ...,m = dimM and
prepare the system in the eigenstate |n(p)〉.
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Measuring the quantum geometric tensor (cont.)

I We may then periodically modulate the system as

xµ(t) = xµ + (2E/Ω) cos(Ωt)δµν ,

for E << Ω.

I This gives rise to a time dependent Hamiltonian H(x(t)),

H(x(t)) ≈ H(x) +
2E

Ω
cos(Ωt)

∂H

∂xν
(x).

and we may apply time dependent perturbation theory to get
the corresponding Fermi Golden rule

Γ(Ω) ≈ 2πE 2
∑
m 6=n

|〈n| ∂H∂xν |m〉|
2

Ω2
δ(En − Em − Ω)
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Measuring the quantum geometric tensor (cont.)

I Integration over Ω yields the quantum metric∫
dΩ Γ(Ω) = 2πE 2gνν(x).

I Different protocols of periodic modulation can be used to
extract the other components of the quantum metric and even
the Berry curvature – thus, a full tomography of the quantum
geometric tensor is possible.
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Fractional Chern insulators and
Kähler geometry
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I To look for FQHE on Chern insulators, we begin with a
dispersionless Chern band described by P : BZ2 → CPn−1.

I Turn on density-density interactions:

V =
∑
i<j

V (ri − rj),

where the r’s are the positions of the fermions on the lattice.

I The scale of the interaction is assumed to be smaller than the
gap separating the Chern band from other bands =⇒ can
project the interaction to the Chern band.
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I The position operators on Z2 act, in momentum space as
x i =

√
−1 ∂

∂ki
.

I For small transferred momentum q, the projected density
operator, in first quantized notation, acts as

ρq = P(k)e iq·rP(k) = P(k)eq·
∂
∂kP(k)

≈ 1 + qi∇i −
1

2
qiqjPx

ix jP

= 1 +∇q +
1

2
∇q∇q −

1

2
|q|2

where ∇ = PdP is the Berry connection, q = qi
∂
∂ki

and

|q|2 = g(q, q), where g is the quantum metric.
[The operator ρq acts on sections of the Bloch bundle

L→ BZ2].
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I A tedious but straightforward calculation shows that, up to
third order,

[ρq1
, ρq2

] ≈ F (q1, q2)(1 +∇q1+q2)

− 1

2

(
Lq1+q2F (q1, q2) + Lq1 |q2|2 − Lq2 |q1|2

)
,

where Lq denotes the Lie derivative with respect to q.

I If the quantum geometric tensor is flat, we then get an
algebra of projected density operators

[ρq1
, ρq2

] ≈ F (q1, q2)ρq1+q2
.
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I If, furthermore, the Berry curvature and the quantum metric
satisfy

|F12|
2

=
√

det(g)

it can be shown [Roy [3]] that the projected density operators
satisfy exactly

[ρq1
, ρq2

] = 2ieg(q1,q2) sin

(
1

2
|F (q1, q2)|

)
ρq1+q2

.
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I The condition

|F12|
2

=
√

det(g),

for non-vanishing
√

det(g) is mathematically equivalent to
the map P : BZ2 → CPn−1 being holomorphic! But
holomorphic with respect to what complex structure?

I If
√

det(g) 6= 0, then P must be an immersion (because
P∗gFS is a Riemannian metric). Then, by taking an
orientation on BZ2, we may, by 90 degree rotation define a
complex structure J. Since BZ2 is 2-dimensional, J is
integrable and turns BZ2 into a complex manifold.
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I Then P being holomorphic means

dP ◦ J = JFS ◦ dP

I This then implies that the triple (ω, J, g) = (P∗ωFS , J,P
∗g)

is compatible

ω(·, J·) = g .

I Since ω = −iF/2, by taking determinants, we have

ω12 =
|F12|

2
=
√

det(g).

I We have proved the statement in one direction, the other
direction can be proved using the Wirtinger inequality and
choosing the appropriate orientation.
[Since ω = −iF/2 and C =

∫
BZ2 iF/2π it is the one that

makes the 1st Chern number negative].
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Flat Kähler bands: ideal for FCIs

I We then look for Chern bands for which the defining map
P : BZ2 → CPn−1 is a holomorphic immersion, hence
(ω, J, g) is a compatible triple, and such that the Kähler
structure is flat.

I Such bands are natural candidates for hosting fractional Chern
insulating phases!
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Engineering flat Kähler bands
I There is a natural way to engineer flat Kähler bands in an

appropriate limit.
I The way to do this, is using the mathematical framework of

geometric quantization and Bergman kernels.
I The idea is that if we fix a flat Kähler structure (ω, J, g) on

BZ2 and pick an Hermitian holomorphic line bundle L→ BZ2

such that the Chern connection satisfies

curv(∇) = −iω,

then by picking an L2−orthonormal basis of H0(BZ2, L⊗p), for
large enough p, described by sections {s1, ..., sp}
[Riemann-Roch] the map

f : BZ2 → CPp−1; k 7→ [a1(k) : · · · : ap(k)]

is an holomorphic immersion and

f ∗ωFS − pω → 0, as p →∞.
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Bergman kernel asymptotics

I More precisely,

f ∗ωFS − pω = − i

2
∂∂ logB,

where

B =

p∑
j=1

hp|aj |2 =

p∑
j=1

hp(sj , sj),

is the diagonal of the Bergman kernel, that has the
asymptotic expansion

B = p + A1p
0 + A2p

−1 + · · ·+ Akp
1−k + . . . ,

where Ak ’s are smooth functions involving geometric
invariants.
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Explicit construction

I We then fix a flat complex structure on the torus described by
z = (k1 + τk2)/2π, τ ∈ H.

I We begin by choosing a basic Hermitian holomorphic line
bundle L→ BZ2 such that curv(∇) = (1/2π)dk1 ∧ dk2.

I A natural choice is the one for which the unique holomorphic
section is described by the Jacobi theta function

θ(z , τ) =
∑
n∈Z

e iπτn
2+2πinz
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I The holomorphic sections of L⊗p are described by theta
functions with characteristics

aj(z) = ϑ

[
j
p

0

]
(pz , pτ)

=
∑
n∈Z

e i
π
p
τ(j+np)2+2πi(j+np)z

, j = 0, ..., p − 1.

I We then have a sequence of Chern bands fp : BZ2 → CPp−1

which are asymptotically flat Kähler bands.
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Asymptotic flatness results

(a) τ = i (b) τ = e iπ/3

(c) τ = 2e iπ/7

Figure: f ∗p ωFS as a function of the quasimomentum k ∈ BZ2, for p = 2
(orange), p = 4 (blue), p = 6 (green), for various anisotropies τ .√

det(g)dk1 ∧ dk2 overlaps exactly for all the cases shown here.
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I Physically, one can then construct tight-binding models by
writing

H(k) = I − 2P(k), with 〈i |P(k)|j〉 =
ai (z)aj(z)∑
k |ak(z)|2

[note that this corresponds to two flat bands with energies
±1] and then Fourier transforming to real space

H(ri , rj) =
∑
k

e ik·(ri−rj)H(k).

I However, such models are not very physical and easy to
realize in the Lab because they involve infinite-range hopping.

I Therefore, it is natural to ask what happens when we truncate
the hoppings to nearest neighbours, next-to-nearest
neighbours, and so on.
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Results on truncation of hoppings

Figure: The geometrical structure,
√

det(g) and ω12, of truncated models

as a function of k ∈ BZ2, for p = 6. In the top panel R = 1 is compared
to the long range case R =∞; in the middle panel R = 2 is compared to
the R =∞ case, and in the bottom panel R = 3 is compared to R =∞.
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Discussion

I
√

det(g) and ω12 are no longer equal =⇒ breaking of
holomorphicity of the Chern bands. However, the difference
between

√
det(g) and ω12 is not so large even for the case of

nearest-neighbor model.

I The flatness of the geometrical quantities changes. The
geometrical quantities will not become more dispersive, and
sometimes they can become even flatter when truncating the
hopping.

I We note that, even when R = 1 and R = 2, the Chern
number, is the same as R =∞ =⇒ the bands are
adiabatically connected to the ideal Kähler band.

I We have also numerically checked the cases with smaller p
and the overall behavior remains the same.
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I I want to remark that in [4], we have also shown the no-go
theorem that it is impossible to construct exactly flat Kähler
bands with a finite total number of bands, i.e., from a
holomorphic map f : BZ2 → CPp−1 for finite p.

64 / 68



If you want to read more and go through details
check our papers: [5, 6, 4].

A big thanks to João P. Nunes and José Mourão for
fruitful discussions!
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Thank you!
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